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ABSTRACT

The emergence of antifungal-resistant Candida strains necessitates novel therapeutic strategies, usually
tackling the overexpression of Cdrl, an ATP-binding cassette efflux pump. This study describes the
development of EMCIP, a new ensemble model for Cdrl inhibitor prediction leveraging multiple traditional
machine learning (ML) algorithms and a multi-instance 3D graph neural network. It utilized various
molecular feature types and learned from ligand conformations represented as 3D molecular graphs. On a
test set structurally dissimilar to the training data, its average precision was 0.755, its F1-score was 0.714,
the area under the receiver operating characteristic curve was 0.884, and the balanced accuracy was 0.799.
It gave a low false positive rate of 0.1236 on another test set outside the training chemical space, indicating
its ability to avoid false positives. This work highlights the potential of stacking ensemble ML and offers a
rigorous general workflow to build ligand-based predictive ML models for other targets.

Keywords: Cdrl inhibitors, antifungal resistance, drug discovery, machine learning, deep learning, graph

neural network, stacking ensemble.
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933  Table 1. Evaluation results on the ET and HT sets of our traditional ML models and MIL-3D-GNN.

Feature Algorithm erap | | RO e gaac | HT-FPR
type score AUC
RDK5 CatBoost 0.630 0.63 0.841 0.748 0.0948
RDK6 XGB 0.505 0.5 0.787 0.690 0.0966
RDK7 LR 0.487 0.507 0.816 0.709 0.1010
Mordred CatBoost 0.696 0.704 0.847 0.787 0.0821
Avalon CatBoost 0.619 0.679 0.852 0.780 0.0749
Ph4_gobbi MLP 0.561 0.593 0.765 0.729 0.1742
Graph MIL-3D-GNN 0.698 0.588 0.868 0.721 0.1381
ET: External test set, Ph4_gobbi: Gobbi pharmacophore, BaAcc: balanced accuracy, MIL-3D-GNN:
multi-instance 3D graph neural network, HT-FPR: false positive rate on the hard test (HT) set.
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Table 2. The performance of 20 stacking models employing 10 ML algorithms as meta-learners on the
validation, ET, and HT sets.

Algorithm used as

Number of
meta-learner of F1- ROC-
base Ligand set AP BaAcc | HT-FPR
each stacking score | AUC
models*
model
7 Validation 0.879 | 0.889 | 0.915 | 0.900
R 7 ET 0.695 | 0.588 | 0.883 | 0.721 0.0650
6 Validation 0.867 | 0.889 | 0.907 | 0.900
6 ET 0.608 | 0.588 | 0.859 | 0.721 0.0686
7 Validation 0.838 | 0.889 | 0.895 | 0.900
7 ET 0.568 | 0.642 | 0.795 | 0.752 0.0839
KNN
6 Validation 0.838 | 0.865 | 0.895 | 0.894
6 ET 0.566 | 0.604 | 0.795 | 0.733 0.0948
7 Validation 0.876 | 0.842 | 0.904 | 0.888
7 ET 0.742 | 0.679 | 0.867 | 0.780 0.1173
SVM
6 Validation 0.860 | 0.842 | 0.898 | 0.888
6 ET 0.663 | 0.679 | 0.781 0.780 0.0993
7 Validation 0.852 | 0.889 | 0.898 | 0.900
RF 7 ET 0.699 | 0.655 | 0.884 | 0.764 0.0957
6 Validation 0.838 | 0.865 | 0.880 | 0.894
6 ET 0.629 | 0.679 | 0.824 | 0.780 0.0993
7 Validation 0.861 0.842 | 0.908 | 0.888
ExT 7 ET 0.670 | 0.655 | 0.858 | 0.764 0.1038
X
6 Validation 0.838 | 0.865 | 0.874 | 0.894
6 ET 0.642 | 0.679 | 0.781 0.780 0.1011
7 Validation 0.594 | 0.744 | 0.859 | 0.859
Ad 7 ET 0.531 0.678 | 0.788 | 0.788 0.1146
a
6 Validation 0.791 0.865 | 0.894 | 0.894
6 ET 0.611 0.727 | 0.802 | 0.802 0.0930
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7 Validation 0.838 | 0.865 | 0.885 | 0.894

7 ET 0.630 | 0.679 | 0.824 | 0.780 0.0839
Grad

6 Validation 0.838 | 0.865 | 0.885 | 0.894

6 ET 0.629 | 0.679 | 0.824 | 0.780 0.1002

7 Validation 0.655 | 0.751 0.846 | 0.833

7 ET 0.536 | 0.593 | 0.820 | 0.729 0.1760
XGB

6 Validation 0.655 | 0.757 | 0.846 | 0.833

6 ET 0.536 | 0.593 | 0.820 | 0.720 0.1760

7 Validation 0.866 | 0.800 | 0.901 0.877

7 ET 0.723 | 0.667 | 0.883 0.776 0.1471

CatBoost

6 Validation 0.863 | 0.821 0.902 | 0.883

6 ET 0.599 | 0.679 | 0.870 | 0.780 0.1300

7 Validation 0.881 0.865 | 0916 | 0.894

7 ET 0.701 0.642 | 0.880 | 0.752 0.1146
MLP

6 Validation 0.867 | 0.842 | 0.905 | 0.888

6 ET 0.599 | 0.630 | 0.854 | 0.748 0.1119

P-values™ 0.04 0.41 0.03 0.34 0.95

*: In case the number of base models was 6, the DL model MIL-3D-GNN was excluded.

**. P-values were calculated using the Wilcoxon signed-rank test. The sample included evaluation
values of 20 meta-models (10 employing all seven base models and 10 employing all but MIL-3D-
GNN) on both the ET set and the validation set. A p-value below 0.05 indicated statistically significant
differences between the two compared scenarios: one using MIL-3D-GNN and the other excluding it.

ET: External test set, HT: Hard test set, FPR: false positive rate.
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Fig. 1. Boxplots and Wilcoxon heatmaps visualizing the results of our molecular representation meta-
analysis. (A) Boxplots comparing the BM 10-fold CV results across 16 types of LB structural representation
based on AP. (B) Heat map illustrating the results of Wilcoxon signed-rank tests based on AP. (C) Boxplots
comparing the BM 10-fold CV results across 16 types of molecular representation based on F1-scores. (D)
Heat map illustrating the results of Wilcoxon signed-rank tests based on F1-scores. In (B) and (D), the pink
cells represent statistically insignificant differences between two molecular feature types (p-values>0.05).
Conversely, the green cells indicate statistically significant differences between the two compared feature

types (p-values<0.05). P-values are provided in Tables S1, S2.
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Fig. 2. The results of hyperparameter tuning across 30 trials in Phase 2. (A) The records of validation BCE
losses across 20 epochs of 30 trials. (B) The records of validation AP values across 20 epochs of 30 trials.
(C) The records of validation F1-scores across 20 epochs of 30 trials. (D) The learning curve when the
configuration obtained from the 13th trial was used. Some trials were pruned, using the median stopping
rule implemented in the ‘MedianPruner’ of Optuna, when their results were not promising, as illustrated by

shorter recorded lines in panels (A), (B), and (C).

38



958

959
960
961
962
963
964
965

966

EMCIP: an Ensemble Model for Cdr1 Inhibitor Prediction
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Fig. 3. Our final Ensemble Model for Cdrl Inhibitor Prediction (EMCIP). (A) The architecture of EMCIP.
Screened molecules, represented by SMILES strings, were preprocessed for different models (fingerprints,
descriptors, 3D molecular graphs). Seven base models then predicted each molecule's probability of being
a Cdrl inhibitor. These predictions were fed into three stacking models (SVM, CatBoost, MLP) for further
refinement. Finally, soft voting combined the probabilities from these models to deliver the final
classification. (B) The graphical user interface (GUI) for EMCIP. This GUI is accessible and user-friendly

to those unfamiliar with programming.
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968  Fig. 4. The architecture of our MIL-3D-GNN model.
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